

Queue-exchange Mechanism to Improve the QoS in a Multi-stack Architecture

Nancy El Rachkidy, Gérard Chalhoub, Alexandre Guitton, Michel Misson

{nancy,chalhoub,guitton,misson}@sancy.univ-bpclermont.fr

Clermont université / LIMOS CNRS – France

Outline

- Mono-stack v/s multi-stack architectures
- Queue-exchange mechanism on a mutli-stack architecture
- Integration in MaCARI
- Evaluation
- Conclusion

Mono-stack architecture

 OSI model = traditional network stack
Single stack

One routing protocol

□ One MAC protocol

One QoS for one traffic

- Several network stacks
- Several QoS (one per stack)
- One traffic per stack

Periodic cycle

• Examples:

- □ IEEE 802.15.4/ZigBee
 - Stochastic MAC (slotted CSMA/CA) and AODV
 - Deterministic MAC (guaranteed time slots) and hierarchical routing protocol
- □ MaCARI:
 - Stochastic MAC (slotted CSMA/CA) and optimized hierarchical routing protocol
 - Deterministic MAC (TDMA) and hierarchical routing protocol

Problem:

Dimensioning of the periods

Queue-exchange Mechanism to Improve the QoS in a Multi-stack Architecture – PEWASUN11©

Solutions:

Dynamic dimensioning? greedy and complicatedQueue-exchange mechanism

Queue-exchange mechanism

Cross-layering MAC-Network

 \Box e.g: current time in p₁:

- Q_1 empty → M_1 can process traffic 2
- M₁ tests if next hop of the frame is not active, then M₁ asks R₁ to compute the new next hop

Queue-exchange mechanism

Queue-exchange mechanism

Drawback: Routing loops can occur in the network

Integration in MaCARI

MaCARI stack

- (M_1, R_1) : (TDMA, hierarchical routing protocol)
- (M₂,R₂): (Optimized hierarchical routing protocol, slotted CSMA/CA)

Integration in MaCARI

MaCARI global cycle

Integration in MaCARI

Queue-exchange Mechanism to Improve the QoS in a Multi-stack Architecture – PEWASUN11©

Evaluation

NS2 simulations

- 40 routers randomly spread over a 30m x 30m
- ITU indoor propagation model
- Tree topology: $L_m = 6$, $R_m = 4$, $C_m = 4$
- Global cycle = 4s
 - \Box [T₀;T₁] = 248 ms
 - \Box [T₁;T₂] = [T₂;T₃] = 1.28 s
- 2 types of traffic

Goodput

Gain up to 21%

Frame loss

End-to-end delay

Conclusion

- Multi-stack architectures
 - □ Mitigate QoS
 - Dimensioning problem yielding to large delay
- Solution:
 - Queue-exchange mechanism
 - Dimensioning not crucial anymore
 - Traffic delay decreasing

